

The wise choice

MultiSolvent® The simplest choice

Why using so many different qualities of the same solvent? You can simplify your work by using Multisolvent[®]. We guarantee Multisolvent[®] for isocratic HPLC, UV spectroscopy, Karl Fischer titrations and as ACS reagent grade. Nevertheless, the high purity and low water content of Multisolvent[®] make it useful for almost every application in the laboratory.

One solvent. Many applications

Single quality

Multisolvent[®] from Scharlau is a unique quality. You will have one single product for all your applications, which will save you from keeping in stock many different qualities. Purchase will be simplified. You won't have to keep track of different qualities and different suppliers.

Preserve the environment

Multisolvent[®] is available in one-way glass bottles as well as in stainless steel shuttle packaging. This way, you may help preserve the environment, since packaging will be returned for recycling.

Highly purified solvent

Multisolvent[®] from Scharlau is a highly purified solvent. Multistep purifications make sure that our new product complies with basically each and every specification of the four qualities it substitutes.

During and after manufacturing, quality control is effected by means of modern analytical tecniques like GC, HPLC, ICP, UV spectroscopy and Karl Fischer titrations. All this leads to a solvent of maximum quality, improving the quality of the single application products.

Competitive price

Multisolvent[®] from Scharlau is being offered at a competitive price. Standardising manufacturing processes and manufacturing larger quantities allows us to reduce costs, which we roll over to our customers. You end up paying less for a better product.

Analysis

We guarantee our Multisolvent[®] as "reagent grade" quality. This means, that our products meet specifications of the ACS (American Chemical Society) for "Reagent Chemicals". In actual fact, our solvents exceed by far these specifications, since the ACS refers itself only to maximum level of impurities which are allowed.

The actual content of each product is proofed by means of an GC chromatogram (FID detector), printed on the label. These guarantees make our Multisolvent[®] an ideal solvent for analytical procedures.

HPLC

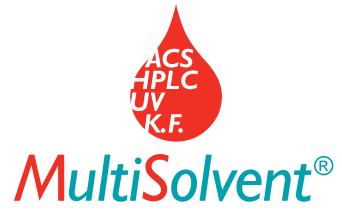
Probably the most widely used detector in HPLC is the UV detector. Our Multisolvent[®] products are controlled by a UV spectrophotometer, to insure adequate UV transmissions for HPLC purposes. Multisolvent[®] is ideal for isocratic HPLC techniques. Don't worry about time consuming microfiltration. Our solvents come free from pump damaging particles.

UV

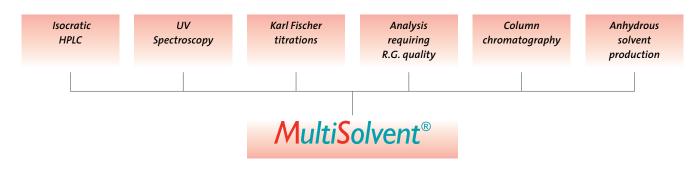
Multisolvent[®] products are checked with a scanning UV-VIS spectrophotometer.

Karl Fischer

Although not a "dry" product, its low content of water makes the Multisolvent[®] suitable for routine Karl Fischer titrations at a very competitive price.


In the case of methanol, the water content of our Multisolvent[®] (typically below 0,03%) is much lower than what is specified by the ACS (max. 0,1% water) for Karl Fischer reagents.

Column chromatography


This separation technique is routinely used in organic chemistry to purify synthesized molecules. The solvent used to develop the column must be pure enough to assure clean NMR spectra after total evaporation.

Anhydrous solvent production

Multisolvent[®] has very low water content and is ideal to be used as starting solvent in the production of anhydrous solvents. Either if thermal distillation or pressure column technologies are used to obtain anhydrous solvents, it is important to start from solvents low in water.

Multisolvent[®] applications

Multisolvent[®] specifications

We guarantee very tight specifications, so that Multisolvent[®] can be used instead of HPLC, spectroscopy, reagent grade or Karl Fischer qualities. It is easily appreciated, when specifications of Multisolvent[®] are compared to the rest. Our Multisolvent[®] quality fulfills all the requirements to be considered a universal solvent.

PRODUCT	ME0302 REAGENT GRADE	ME0310 ISOCRATIC HPLC GRADE	ME0305 UV SPECTROSCOPY GRADE	ME0304 DRY	ME0315 MULTISOLVENT [®]	TESTED
Assay (G.C.)	min. 99,9%	min. 99,7%	min. 99,9%	min. 99,8%	min. 99,9%	 Image: A second s
Acidity	max. 0,0002meq/g	max. 0,0002meq/g	max. 0,0003meq/g	max. 0,0002meq/g	max. 0,0002meq/g	 Image: A second s
Akalinity	max. 0,0002meq/g	max. 0,0002meq/g	max. 0,0002meq/g	max. 0,0002meq/g	max. 0,0002meq/g	 Image: A second s
Aluminium (Al)	max. 0,00005%			max. 0,00005%	max. 0,00001%	 Image: A second s
Barium (Ba)	max. 0,00001%			max. 0,00001%	max. 0,000001%	 Image: A second s
Boron (B)	max. 0,000002%			max. 0,000002%	max. 0,000002%	 Image: A second s
Cadmium (Cd)	max. 0,000005%			max. 0,000005%	max. 0,000001%	 Image: A second s
Calcium (Ca)	max. 0,00005%			max. 0,00005%	max. 0,00003%	 Image: A second s
Zinc (Zn)	max. 0,00001%			max. 0,00001%	max. 0,000001%	 Image: A second s
Copper (Cu)	max. 0,000002%			max. 0,000002%	max. 0,000002%	 Image: A second s
Chromium (Cr)	max. 0,000002%			max. 0,000002%	max. 0,000002%	 Image: A second s
Tin (Sn)	max. 0,00001%			max. 0,00001%	max. 0,00001%	 Image: A second s
Iron (Fe)	max. 0,00001%			max. 0,00001%	max. 0,000002%	 Image: A second s
Magnesium (Mg)	max. 0,00001%			max. 0,00001%	max. 0,00001%	 Image: A second s
Manganese (Mn)	max. 0,000002%			max. 0,000002%	max. 0,000001%	 Image: A second s
Nickel (Ni)	max. 0,000002%			max. 0,000002%	max. 0,000002%	 Image: A second s
Lead (Pb)	max. 0,00001%			max. 0,00001%	max. 0,00001%	
Ethanol (G.C.)	max. 0,05%			max. 0,1%	max. 0,05%	 Image: A second s
Aldehydes, ketones (as acetone)	max. 0,001%			max. 0,001%	max. 0,001%	 Image: A second s
Substances darkenend by H ₂ SO ₄	PASSES TEST			PASSES TEST	PASSES TEST	 Image: A second s
Non-volatile matter	max. 0,001%	max. 0,0005%	max. 0,0002%	max. 0,0005%	max. 0,0003%	 Image: A second s
Water (K.F.)	max. 0,05%	max. 0,05%	max. 0,03%	max. 0,005%	max. 0,03%	
Colour (Hazen)	max. 10		max. 10			

Minimum transmission in a 1,0 cm cell at wavelength:

	Transmission:			
260 nm	98	3%	98%	1
245 nm	90%			
242 nm	90)%	90%	1
232 nm	80)%		
220 nm	50%		50%	1
210 nm	20%		20%	1
207 nm	10	0%	10%	1

ME0302 Methanol, reagent grade, ACS, ISO

ME0310 Methanol, isocratic HPLC grade

ME0305

Methanol, spectroscopy grade Spectrosol®

ME0304

Methanol, dried (max. 0,005% H₂O), reagent grade (K.F.)

ME0315 Methanol, Multisolvent®

Actual lot analysis on the label

Not only do we guarantee very tight specifications. Our labels carry the actual lot analysis. Every label carries also the signature of our QC chemist, as a personal guarantee for our quality.

Avoid having to use a different solvent quality for every application. Avoid having to collect and archive different certificates of guarantee. Our label is our proof of quality and actual lot analysis.

ME03151000 11 ACTUAL LOT ANALYSIS regr ()	2770 BATCH 11981107	Scharlau	٢	Schlink and A. S. Sandara, and S. Sandara, S. Sandara, S. S. Sandara, Sa
alamitran (AT)	Annual An	ACS ISO UV-VIS K.F. Applications: HPLC, Regard glade, AG5, ISO, UV-VIS Spectrascopy, Kalf Facther Illinitons Metanol		The second se
phd Gui, 6 (2000) 1 Guine (10) 6 (2000) 1 Guine (11) 6 (2000) 1 Guine (11) 7 (2000) 1 Guine (11) 7 (2000) 1 Marganian (200) 7 (2000) 1 Marganian (2000)	The second secon	Methanol Méthanol Alcole metilico	\$	
Scherlab S L Gale Prog. 32 - P 1 May 9714 Cel. 2007 Distioned (Math Tel. 54-0528040) Note in Specia	For laboratory use only	-C1U01+M10204+DHU75glow*+CA8_(8748-8) C2_00004408+AD1121118+ND6_318+X14_28+ADH Met 2+61+ Sheff Vide 6/2015 UN 1230		

Multisolvent[®] from Scharlau is labelled following E.U. regulations

ISO 9001: 2000

Quality procedures

Like all other Scharlau reagents, our Multisolvent[®] line of solvents is being manufactured following ISO 9001: 2000 quality procedures. This certification simplifies your quality acceptance and helps you, to achieve your own quality assurance goals.

Multisolvent[®] tips

- It will cost you less
- It will reduce the stock of your solvents
- It will simplify your election
- It will guarantee your results
- It will avoid errors in your laboratory
- It will increase your safety
- You can also purchase it in shuttle packaging

Shuttle packaging is available only in some countries. Ask your distributor!

CAT-00MS11

The wise choice

Ordering information

AC0310

Acetone, Multisc	olvent®	
AC03101000	11	
AC03102500	2,5	
AC03104000	41	
AC0310007E	71	
AC0310025S	25 I	Ĭ

AC0333

Acetonitrile, Mul	tisolvent®	
AC03331000	11	
AC03332500	2,5	
AC03334000	41	
AC0333007E	71	
AC0333025S	25	Ĭ

BE0041

Benzene, Multis	olvent®	
BE00411000	11	
BE00412500	2,5	
BE00414000	41	
BE0041007E	71	
BE0041025S	25	Ĭ

CL0218

Chloroform, Multisolvent®, stabilized with etanol CL02181000 1 I CL02182500 2,5 I

CI0039

Cyclohexane, Multiso	lvent®	
CI00391000	11	
CI00392500 2,5	51	
CI00394000	41	
CI0039007E	71	

CL0347

Dichloromethane, Multisolvent[®], stabilized with approx. 50 ppm of amylene CL03471000 1 I ● CL03472500 2,5 I ● CL03474000 4 I ● CL0347007E 7 I ●

DI1072

N,N-Dimethylforr	namide, Mult	isolvent®
DI10721000	11	
DI10722500	2,5 I	
DI10724000	41	
DI1072007E	71	
DI1072025S	25 I	Ĭ

ET0015

Ethanol absolute	e, Multisolv	ent®
ET00151000	11	
ET00152500	2,5	
ET00154000	41	
ET0015007E	71	
FT0015025S	251	Ĭ

ET0013

96%, Multisc	lvent®
11	
2,5	
41	
71	
25	Ĩ
	1 2,5 4 7

AC0155

Ethyl acetate 96%	Multisc	olvent®
AC01551000	11	
AC01552500	2,51	
AC01554000	41	
AC0155007E	71	
AC0155025S	25	Ĭ

HE0221

Hexane, traction	1	
from petroleum,	Multisolver	nt®
HE02211000	11	
HE02212500	2,5	
HE02214000	41	
HE0221007E	71	
HE0221025S	251	Ĭ

HE0234

n-Hexane, 96%,Multisolvent®			
HE02341000	11		
HE02342500	2,5		
HE02344000	41		
HE0234007E	71		
HE0234025S	25	Ĭ	

IS0122

Isohexane, Multisolvent®			
IS01221000	11		
IS01222500	2.51		

ME0315

Methanol, Multisolvent®			
ME03151000	11		
ME03152500	2,5		
ME03154000	41		
ME0315007E	71		
ME0315025S	25	Ĭ	

ET0095

Petroleum ether, Multisolvent [®] ,			
boiling range 40-60°C			
ET00951000	11		
ET00952500	2,5		
ET00954000	41		
ET0095007E	71		
ET0095025S	25	Ĭ	

AL0321

2-Propanol, Multisolvent®			
AL03211000	11		
AL03212500	2,5		
AL03214000	41		
AL0321007E	71		
AL0321025S	251	Ĭ	

TE0127

Tetrachloroethene, Multisolvent® TE01271000 1 I

TE0228

Tetrahydrofuran, Multisolvent[®], GPC grade, stabilized with 250 ppm of 2,6-Di-tert-butyl-

4-methylphenol	(BHT)	
TE02281000	11	
TE02282500	2,5	
TE00004000	4.1	-

TE02284000	41	
TE0228007E	71	
TE0228025S	25	Ĭ

TO0085

Toluene, Multisolvent®			
TO00851000	11		
TO00852500	2,5		
TO00854000	41		
TO0085007E	71		
TO0085025S	25	Ĭ	

XI0059

Xylene, mixture of isomers,

Multisolvent®		
XI00591000	11	
XI00592500	2,5	
XI0059007E	71	
XI0059025S	25	Ĭ